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Convergence of the Fraser-Hart Algorithm 
for Rational Chebyshev Approximation 

By Charles B. Dunham 

Abstract. The Fraser-Hart variant of the Remez algorithm is used to determine 

the best rational Chebyshev approximation to a continuous function on an interval. 

A necessary and suffilcient condition for the matrix of the associated linear system 

to be nonsingular at.the solution to the approximation problem is given. It is shown 

that the Fraser-Hart method may fail even if started arbitrarily close to the solution 

of the approximation problem. Use of the secant method in place of the Fraser-Hart 

iteration is also considered. 

1. Introduction. Let [at, 3] be a finite interval. Let w be a positive continuous 

weight function on [at, ,1]. Let Rn [at, 1] be the set of ratios r = p/q of polynomials 

p of degree at most n to polynomials q of degree at most m, q(x) > 0 for at S x S 1. 

The approximation problem is: given f continuous on [a, 3], find r* E Rn [a, 1] to 

minimize 

e(r) = max{Iw(x)(f(x) - r(x))I: at 6 x < ,}. 

Such an element r* is called a best approximation to f. 
It has been shown that a best approximation exists, has a characteristic number 

of alternations, and is unique [1]. One of the most popular methods of finding the 

best approximation is Fraser and Hart's variant of the Remez algorithm [3], [4], 

hereafter called the FHR algorithm. In the rational Remez algorithm, we attempt to 

solve the system, 

(1) f(xi) - r(xi) = (-)ix/w(xi), i = O,. . . , n + m + 1, 

where a S xo < ... < Xn+m + 1 S ,. From (1) we obtain 

p(xi) + q(xi)pi(X) = O, i = O, . . ., n + m + 1, 

where pi(X) = (- 1)1X/w(x1) - f (xi). Fixing the constant term of q equal to one, we 

get 

(2) P(Xd) + ;j(X)Pi(X) + (- l)AX/w(xd) = f (xi), i = 0, . . . , n + m + 1, 

where q- is a polynomial of degree m with constant term zero. If we knew X, we 

could evaluate pi(X) and then (2) would be a linear system, which we could easily 

solve. The approach of Fraser and Hart involves making a guess Xo at X and solving 

(3) p(xi) + q(xd)p(1(0) + (- l)AX/w(xd) = f (xi), i = 0, . .. , n + m + 1. 
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We then set X0 = X and iterate until IX - IoI is sufficiently small. 

2. Singularity of the Matrix. It would be desirable for the coefficient matrix 
of (3) to be nonsingular whenever {xo, .. . , Xn+ m + 1 } is an alternant and X0 = 

(f(xo) - r*(xo))w(xo). Unfortunately, this is not the case when r* = 0, for in this 
case the factors [(- 1)iXo/w(xi) - f(xi)] drop out and the matrix of (3) is singular. In 
particular, in the trivial case where f = 0 and we set X? = 0, the factor pi(Xo) = 
[(- 1iXo/w(xi) - f(xi)] vanishes for any choice of xi and the matrix of (3) is singular 
if m > 0. The theorem to follow shows that the matrix may be singular for degenerate 
r* and possibly some nondegenerate r*. 

THEOREM 1. Let w(f - r*) alternate n + m + 1 times and suppose we can write 
r* as po/qo, po of degree at most n, qo of degree at most m with constant term zero. 
Let {xo, . . ., + 1 be an alternant of (f - r*)w and X0 = (f(xo) - r*(xo))w(xo). 
Then the matrix of the FHR algorithm is singular. 

Proof. We have 

(4) f(xi) - p*(xi)Iq*(xi) = (-1)'Xo/w(xi), i = 0, ... , n + m + 1. 

The FHR matrix corresponding to (3) is singular if there exists p of degree n, q- of 
degree m with constant term zero, and X such that at least one of p, q, X is nonzero, 
but 

(5) p(xd) + -(xi) d(- 10X01/w(x1) - f(xi)] + (- 1)ivw(xi) = O, 

i=0, . . . ,n + m + 1. 

We use (4) to replace [(- 1)1Xo/w(xi) - f(xi)] by -p*(xi)lq *(xi), and by the hypothe- 
sis on r*, we obtain 

po(xi) + q0(xi)[-p*(xi)lq*(xi)J = 0, i = O, ... , n + m + 1, 

and (5) is satisfied. 
In case the linear system (3) uses the power basis for polynomials, degenerate r 

can always be written as po/qo, qo with constant term zero; we reduce r to lowest 
terms, then multiply numerator and denominator by x. In the case 0 0 [ce, !31, there 
exist pole-free nondegenerate rational functions with constant term of denominator 
equal to zero. 

A consequence of the theorem is that if we start the FHR algorithm where it 
should end, namely on the alternating error extrema and with the optimal value of 
X, the matrix is singular and the algorithm fails. Another consequence is that if the 
algorithm does converge to the best approximation, the matrices become closer and 
closer to singular, giving numerical problems. 

In practice, the best approximation r* to f is unlikely to be expressible in the 
form po/qo, qo with constant term zero. However, if r* is close to such an element, 
the FHR matrix of (3) at the extrema of w(f - r*) with X0 = (f(xo) - r*(xo))w(xo) 
will be near singular. 

THEOREM 2. Suppose r* is best to f and r* cannot be expressed as p/q, p of 
degree at most n, q of degree m with constant term equal to zero. Let {xo, . . . 

Xn + m +1 } be an alternant of (f - r*)w and X0 = (f(xo) - r*(xo))w(xo). T7hen the 



1080 CHARLES B. DUNHAM 

matrix of the FHR algorithm is nonsingular at the solution to the approximation prob- 
lem. 

Proof. Suppose the matrix is singular, then (5) is satisfied for at least one of 
p, q, X nonzero. Using (4), we can rewrite (5) as 

(6) p(x1) + q(x1)[-p*(xj)lq*(x1)] + (-1l)X/w(xj) = 0, i = 0, . .. , n + m + 1. 

Suppose (6) is satisfied. First suppose that X = 0, then p(xj)/fj(x1) = p*(xj)lq*(x1). 
This violates our hypothesis on r*. Next let X # 0, then p + q-(-p*/q*) has n + m + 1 
sign changes. But pq* - p*qj is a polynomial of degree at most n + m and so we can 
have only n + m sign changes. Hence (6) is not satisfied and the matrix is nonsingular. 

3. Convergence of the Fraser-Hart-Remez Algorithm. Convergence of the rational 
Remez algorithm for sufficiently good starting points is guaranteed by the theory of 
Barrar and Loeb [2] if the best approximation is nondegenerate. Thus if the FHR 
algorithm solves all systems of the type (1) encountered, it has the same convergence 
properties. Unfortunately, this is not the case as is shown below. 

We assume in this section that {xo, . . ., xn + m + 1 } is fixed. Let X be a number 
such that (3) has a nonsingular matrix when X0 = X. Then the same is true for X0 in 
a neighborhood of K. We consider only X0 in such a neighborhood. The solution X 
of (3) depends only on X0 and hence is a function of X0. Cramer's rule gives X(X0) = 

N(Xo)/D(Xo), where D(Xo) is the determinant of the matrix of (3) and N(Xo) is the 
determinant of the same matrix with the last column replaced by a column of values 
of f. Let 

(7) h(Xo) = (alaxO)X(XO) = N'(Xo)/D(Xo) - N(Xo)D (Xo)/D2 (XO) 

and it is seen that h is a continuous function of X0 in a neighborhood of X. 

As X depends only on X0 for fixed {xo, . . . , xn + m + 1 }, the Fraser-Hart tech- 
nique of solving (1) via (3) is a linear iteration, as described by Henrici in [5, Chapter 

4]. Let us assume that (3) has a nonsingular matrix when X0 = X*, the solution of 

(1). Then by the argument of Henrici [5, p. 71], the (local) convergence of the 

Fraser-Hart iteration depends on the magnitude of Ih(X*)I. If it is less than one, local 

convergence occurs; but if it is more than one, divergence must occur. An example 
where Ih(X*)I is large is now given. 

Let n = 0, m = 1, then we have 3 points {xO, x1, x2}. Let xo = 0 and w = 1. 

Then by Cramer's rule we have 

1 0 fo 

(8) X(X0) = ?N(X) = 1 P2(X0)X2 f2 
D(-X0) 1 0 1 

P 1 p(O)X -1I 
1 P2(0)X2 1 

if D(Xo) # 0. D(X*) is the determinant of the matrix of (3) with X0 = X*. If it is 

zero, the Fraser-Hart method of solving (1) will have a singular matrix in solving (3) 
with X0 = X* and will fail. 

Let f be a nonzero approximant, then the optimal X is f) = 0. By the second 
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theorem, D(X*) # 0. As X(X*) = X*, we must have by Cramer's rule N(X*) = 0. 
We have by (7) 

h(X*) = N'(X*)/D(X*). 

Expanding the determinant of N(Xo), we get 

N(M0) =f2P1(X0)X1 -f1P2(Q0)X2 +fO(P2(XO)x2 -P1(X0)X1); 

and since (a/aX0)pi(X0) = (- 1)', we have 

N'(XO)=xlf2 -AiX2 +fo(x2 +X1). 

It is clear that we can make N' as large as we like by choosing f to be a rational large 
at x2 and small at xo and xi. Hence N'(O) can be made as large as we like, and hence 
h(O) can be made arbitrarily large. 

In the case that the best rational approximation is a polynomial p of exact degree 
n and {x0, . . . X,n + m + 1 } is an alternant of w(f - p), the optimal X is obtained after 
solving (3) once. To see this, observe that the right column of the numerator deter- 
minant (as in (8)) is of the form 

f(xi) = p(xi) + (- lA*/w(xi). 

By adding multiples of the columns corresponding to the polynomial basis to the right- 
hand column, we can change this column to (- 1)iX*/w(x,) and the value of the deter- 
minant is not changed. But this determinant is just X* times the denominator deter- 
minant and so we get X = X* regardless of the value of X0. 

This suggests that if the denominator of the best rational approximation is near 
constant, the convergence of the Fraser-Hart iteration for X* will be rapid. We recall 
that the case of nonconvergence of the previous section involved a denominator 
which was not near constant. 

We have seen that for fixed {X0 . . . ,Xn + m + 1 }, the X obtained by solving (3) 
depends only on X0 and is, therefore, a function of X0. Define F(Xo) = X(X0) - X0. 
For X* a solution of (1) we have F(X*) = 0. It seems, therefore, that we can use any 
method of solving F(Xo) = 0 to try to get X*. Ralston [7, p. 274] uses the secant 
method to solve F(Xo) = 0. The secant method has superlinear convergence and con- 
verges given a sufficiently good starting point if F'(Xo) = h(Xo) - 1 is continuous in a 
neighborhood of X*. This happens if the matrix of (3) is nonsingular with X0 = X*; 
a sufficient condition for this is that the solution r to (1) satisfies the condition on 
r* in Theorem 2. 

Whereas the secant method has superlinear convergence, the previously cited 
analysis of Henrici [5, p. 71] suggests that in general, the Fraser-Hart technique of 
solving (1) via (3) has only linear convergence with convergence factor Ih(X*)I. Ex- 
periments with programs using the Fraser-Hart technique appear to confirm this ex- 
pectation. Theory thus appears to favor the secant method over the Fraser-Hart itera- 
tion, as the secant method has a faster rate of convergence and converges if the starting 
point is close enough. 
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